## You are here

Homeprime quadruplet conjecture

## Primary tabs

# prime quadruplet conjecture

Conjecture. (Hardy & Littlewood) There are infinitely many prime quadruplets.

As with twin primes, prime quadruplets generally become scarcer the higher one looks for them with the aid of the computer, yet they also display the same unevenness of distribution: there is only one prime quadruplet between 40000 and 50000, yet there are three between 70000 and 80000. While Euclid proved long ago that there are infinitely many primes, it is still not known whether there are also infinitely many prime quadruplets.

The question is related to the twin prime conjecture: proving the prime quadruplet conjecture would automatically prove the twin prime conjecture as well. However, disproving the prime quadruplet conjecture might not necessarily disprove the twin prime conjecture as well.

## Mathematics Subject Classification

11N05*no label found*

- Forums
- Planetary Bugs
- HS/Secondary
- University/Tertiary
- Graduate/Advanced
- Industry/Practice
- Research Topics
- LaTeX help
- Math Comptetitions
- Math History
- Math Humor
- PlanetMath Comments
- PlanetMath System Updates and News
- PlanetMath help
- PlanetMath.ORG
- Strategic Communications Development
- The Math Pub
- Testing messages (ignore)

- Other useful stuff
- Corrections