## You are here

Homesupersymmetry

## Primary tabs

# supersymmetry

###### Definition 0.1.

*Supersymmetry* or Poincaré, (extended) quantum symmetry is usually defined as an extension of ordinary spacetime symmetries obtained by adjoining $N$ spinorial generators $Q$ whose anticommutator yields a
translation generator: $\left\{Q,Q\right\}=\left\{P\right\}$.

As further explained in ref. [1]:

“This

(super)symmetry…(of thesuperspace)… can be realized on ordinary fields (that are defined as certain functions of physical spacetime(s)) by transformations that mix bosons and fermions.Such realizations suffice to study supersymmetry (one can write invariant actions, etc.) but are as cumbersome and inconvenient as doing vector calculus component by component. A compact alternative to this ‘component field’ approach is given by the”, which is defined next.superspace–superfieldapproach

###### Definition 0.2.

*Quantum superspace, or superspacetimes*, can be defined as an extension(s) of ordinary spacetime(s) to include
additional anticommuting coordinates, for example, in the form of $N$ two-component Weyl spinors $\theta$.

###### Definition 0.3.

*(Quantum) superfields* $\Psi(x,\theta)$ are *functions* defined over such superspaces, or superspacetimes.
Taylor series expansions of the superfield functions can be then performed with respect to the anticommuting coordinates $\theta$; this Taylor series has only a finite number of terms and the series expansion
coefficients obtained in this manner are the ordinary ‘component fields’ specified above.

Remarks:
Supersymmetry is expected to be manifested, or observable, in such superspaces, that is, the *supersymmetry algebras* are represented by translations and rotations involving *both* the spacetime and the anticommuting coordinates. Then, the transformations of the ‘component fields’ can be computed from the Taylor expansion of
the *translated and rotated superfields*. Especially important are those transformations that mix boson
and fermion symmetries; further details are found in ref. [2].

# References

- 1 J.S. Gates, Jr, et al. “Superspace”., arxiv-hep-th/0108200 preprint (1983).
- 2 “Preprint of 1,001 Lessons in Supersymmetry.” on line PDF.

## Mathematics Subject Classification

55U40*no label found*55-02

*no label found*81Q60

*no label found*81R50

*no label found*81R15

*no label found*

- Forums
- Planetary Bugs
- HS/Secondary
- University/Tertiary
- Graduate/Advanced
- Industry/Practice
- Research Topics
- LaTeX help
- Math Comptetitions
- Math History
- Math Humor
- PlanetMath Comments
- PlanetMath System Updates and News
- PlanetMath help
- PlanetMath.ORG
- Strategic Communications Development
- The Math Pub
- Testing messages (ignore)

- Other useful stuff
- Corrections